
11/19/2008

1

Polymorphism

Lecture 11

Object-Oriented Programming

Agenda

• Classes and Interfaces

• The Object Class

• Object References

• Primitive Assignment

• Reference Assignment

• Relationship Between Objects and Object References

• References and Inheritance

• Single vs. Multiple Inheritance

• Polymorphism

• Key points about Polymorphism

• Polymorphism via Interfaces

11/19/2008

2

Classes and Interfaces

Factors out

common properties

and capabilities of

similar objects

Interface Class

Models a role;

defines a set of

responsibilities

Models an object

with properties

and capabilities

Factors out

common

capabilities of

dissimilar objects

Declares, but does

not define

methods

Declares methods

and may define

some or all of them

A class can

implement multiple

interfaces

A class can extend

only one

superclass

The Object Class

• A class called Object is defined in the java.lang

package of the Java standard class library

• All classes are derived from the Object class

• If a class is not explicitly defined to be the child of an
existing class, it is assumed to be the child of the Object

class

• Therefore, the Object class is the ultimate root of all

class hierarchies

11/19/2008

3

The Object Class

• The Object class contains a few useful methods, which

are inherited by all classes

• For example, the toString method is defined in the

Object class

• Every time we have defined toString, we have actually

been overriding an existing definition

• The toString method in the Object class is defined to

return a string that contains the name of the object’s class

together along with some other information

The Object Class

• All objects are guaranteed to have a
toString method via inheritance

• Thus the println method can call
toString for any object that is passed to
it

11/19/2008

4

The Object Class

• The equals method of the Object class returns true if
two references are aliases

• We can override equals in any class to define equality in
some more appropriate way

• The String class defines the equals method to return
true if two String objects contain the same characters

• Therefore the String class has overridden the equals
method inherited from Object in favor of its own version

Object References

• All interaction with an object occurs through

object reference variables

• An object reference variable holds the reference

(address, the location) of an object

ChessPiece bishop1 = new ChessPiece();

bishop1

11/19/2008

5

Primitive Assignment

• The act of assignment takes a copy of a

value and stores it in a variable

• For primitive types:

num2 = num1;Before

num1

5

num2

12

After

num1

5

num2

5

Reference Assignment

• For object references, the reference is

copied:

bishop2 = bishop1;Before

bishop1 bishop2 After

bishop1 bishop2

11/19/2008

6

Relationship Between Objects and

Object References

• Two or more references can refer to the

same object; these references are called

aliases of each other

• One object (and its data) can be accessed

using different references

References and Inheritance
• An object reference can refer to an object of

its class, or to an object of any class derived

from it by inheritance

• For example, if the Holiday class is used to

derive a child class called Eid, then a

Holiday reference could actually be used to

point to a Eid object

Holiday day;

day = new Holiday();

…

day = new Eid();

Holiday

Eid

11/19/2008

7

References and Inheritance
• Assigning an object to an ancestor reference is considered to

be a widening conversion, and can be performed by simple

assignment

• Assigning an ancestor object to a reference can also be done,

but it is considered to be a narrowing conversion and must be

done with a cast

• The widening conversion is the most useful

– for implementing polymorphism

Holiday day = new Eid();

Eid c1 = new Eid();

Holiday day = c1;

Eid c2 = (Eid) day;

References and Inheritance

• An object reference variable can refer to any

object instantiated from

– its own class, or

– any class derived from it by inheritance

• For example,
Holiday day;

day = new Holiday();

…

day = new Eid();

Holiday

Eid
The assignment of an object of a

derived class to a reference
variable of the base class can be

considered as a widening
conversion

11/19/2008

8

References and Inheritance

• Through a given type of reference variable,

we can invoke only the methods defined in

that type

Can we do the following statements:
day.celebrate();

day.goToPrayers();

Holiday day;

day = new Eid();

class Holiday

{

public void celebrate()

{…}

}

class Eid extends Holiday

{

public void celebrate()

{…}

public void goToPrayers()

{…}

}

References and Inheritance

• We can “promote” an object back to its

original type through an explicit narrowing

cast:

Holiday day = new Eid();

day.celebrate();

…

Eid e = (Eid) day;

e.goToPrayers();

Question: which celebrate() will be invoked by the line:

day.celebrate();

11/19/2008

9

What is Polymorphism?

• A polymorphic reference can refer to different types of
objects at different times
– In java every reference can be polymorphic except of references to

base types and final classes.

• It is the type of the object being referenced, not the
reference type, that determines which method is invoked
– Polymorphic references are therefore resolved at run-time, not

during compilation; this is called dynamic binding

• Careful use of polymorphic references can lead to elegant,
robust software designs

Polymorphism
• Polymorphism: A polymorphic reference v is declared as class C, but

unless C is final or base type, v can refer to an object of class C or to an

object of any class derived from C.

• A method call v.<method_name>(<args>) invokes a method of the class of

an object referred to by v (not necessarily C):

• A very common usage of polymorphism: If classes C1, C2,, Cn are all

derived from C, define an array A of elements of C.

The entries A[i] can then refer to objects of classes C1,, Cn.

Ex1:

Holiday day =

new Eid();

day.celebrate();

…

Ex2:

void process(Holiday day)

{ …

day.celebrate();

… }

Eid day = ...;

process(day)

11/19/2008

10

Single vs. Multiple Inheritance

• Some object-oriented languages allow multiple

inheritance, which allows a class to be derived

from two or more classes, inheriting the members

of all parents

• The price: collisions, such as the same variable

name, same method name in two parents, have to

be resolved

• Java decision: single inheritance, meaning that a

derived class can have only one parent class

Polymorphism

– SportsCar, Van, and SUV are all subclasses of the Car class

– Car has an abstract move() method that each of its subclasses
define

– however, each of its subclasses defines this method differently

Car

Van SUVSportsCar

11/19/2008

11

Polymorphism

• What happens when we:
– tell SportsCar to move()?

(moves fast)

– tell Van to move()?

(moves at a moderate speed)

– tell SUV to move()?

(sometimes moves, sometimes just stops!

• Polymorphism is a fancy word for “multiple

forms,”

– e.g., multiple forms of response to the same message

Key points about Polymorphism

• A subclass inherits methods from its superclass; it can

respond to all the same messages

• We can refer to an instance of a subclass as if it were

an instance of its superclass – relaxes “strict type matching”

// Declaration: Car is the “declared type” of myCar

Car myCar;

// Instantiation: Van is the “actual type” of myCar

myCar = new Van();

11/19/2008

12

Key points about Polymorphism

• Object will respond according to implementation defined
in subclass!

• Assignment is NOT creating an instance of Car, which
can only be done by new. It “is a” Car, but not an instance
of Car!

myCar.move(); // myCar will move like a

Van, // though we refer to it as a Car!

• Can only call methods of the declared type!

• Thus can only call Car methods on myCar – can’t take

advantage of any of the methods of the actual type

Code Example

/**

* A simple example of Polymorphism – doesn’t show the
full power...

*/

public class RaceTrack {

private Car _car1, _car2, _car3;

// note they're all declared as Cars

public RaceTrack() {

_car1 = new SportsCar();

_car2 = new Van();

_car3 = new SUV();

// but actual types are subtypes of Car

}

11/19/2008

13

Code Example (Cont’d)

public void startRace() {

// tell Car instances to move

_car1.move();

_car2.move();

_car3.move();

/** Note:

startRace coded polymorphically in terms

of declared type Car, but methods will

be called on instances of actual subtypes */

}

} // end of class RaceTrack

Class Knowledge

• When sending a message to an instance, we do not
need to know its exact class...
– as long as it extends some superclass, we can send it

any message we could send to the superclass

– but the message may be handled differently by the
subclass than it would be by the superclass

• Classic example: shapes (similar to simple
RaceTrack example)
– each shape subclass knows how to draw itself, but all

do it differently
• simply say _shape.draw()

11/19/2008

14

Another Code Example

public class ShapeApp extends wheels.users.Frame {

private Shape _shape1,_shape2;

public ShapeApp() {

super();

_shape1 = new Triangle();

_shape2 = new Square();

}

public void drawShapes() {

_shape1.draw();

_shape2.draw();

}

public static void main(String[] argv) {

ShapeApp app = new ShapeApp();

}

}

Polymorphism via Interfaces

• Define a polymorphism reference through

interface

– declare a reference variable of an interface type

Doable obj;

– the obj reference can be used to point to any object of

any class that implements the Doable interface

– the version of doThis depends on the type of object

that obj is referring to:

obj.doThis();

11/19/2008

15

More Examples

public interface Speaker

{

public void speak();

}

class Philosopher extends Human
implements Speaker

{

//

public void speak()
{…}

public void pontificate()

{…}

}

class Dog extends Animal
implements Speaker

{

//

public void speak()
{

…

}

}

Speaker guest;

guest = new Philosopher();

guest.speak();

guest = Dog();

guest.speak();

Speaker special;

special = new Philosopher();

special.pontificate();

Speaker special;

special = new Philosopher();

((Philosopher)special).pontificate();

// compiler error

Design Problem

• You are designing a program to sort a list of

double values. However, you cannot use a

predetermined sorting algorithm. Your

choice of sorting algorithm must be made at

runtime.

• What will you do to solve this problem?

11/19/2008

16

public interface SortInterface {

public void sort(double[] list);
}

public class QuickSort implements
SortInterface {
public void sort(double[] a) {
// quick sort code here
}

}

public class BubbleSort implements
SortInterface {
public void sort(double[] list)
{
// bubble sort code here

}

}

public class SortingContext {
private SortInterface sorter = null;

public void sortDouble(double[] list) {
sorter.sort(list);
}

public SortInterface getSorter() {
return sorter;
}

public void setSorter(SortInterface
sorter) {
this.sorter = sorter;
}

}

public class SortingClient {
public static void main(String[] args) {
double[] list =
{1,2.4,7.9,3.2,1.2,0.2,10.2,22.5,19.6};

SortingContext context = new
SortingContext();

context.setSorter(new BubbleSort());

context.sortDouble(list);
for(int i =0; i< list.length; i++) {
System.out.println(list[i]);
}

}

Interface and

Polymorphism

Example

Strategy Pattern

• The code we just saw is called a Strategy Pattern.

• It uses the polymorphic behavior through interfaces.

11/19/2008

17

Readings

• Book Name: Head First JAVA

Author Name: Kathy Sierra & Bert Bates

Content: Chapter # 7 & 8

